

New Braunfels Regional Rehabilitation Hospital New Braunfels, TX

Adam Bernardo Mechanical Option

Images courtesy of Dekker/Perich/Sabatini Architects

PROJECT INTRODUCTION

DEPTH STUDIES

BREADTH STUDY

OVERALL EVALUATION

CONCLUSION / QUESTIONS

Images courtesy of Dekker/Perich/Sabatini Architects



PROJECT INTRODUCTION MECHANICAL DEPTH STUDIES STRUCTURAL BREADTH **OVERALL EVALUATION CONCLUSION / QUESTIONS**

PROJECT INTRODUCTION

PROJECT INTRODUCTION FACILITY DESCRIPTION MECHANICAL SYSTEM OVERVIEW **THESIS GOALS** MECHANICAL DEPTH STUDIES **STRUCTURAL BREADTH OVERALL EVALUATION CONCLUSION / QUESTIONS**

FACILITY DESCRIPTION

Function: acute-care rehabilitation hospital

Location: New Braunfels, TX ~30 miles NE of San Antonio

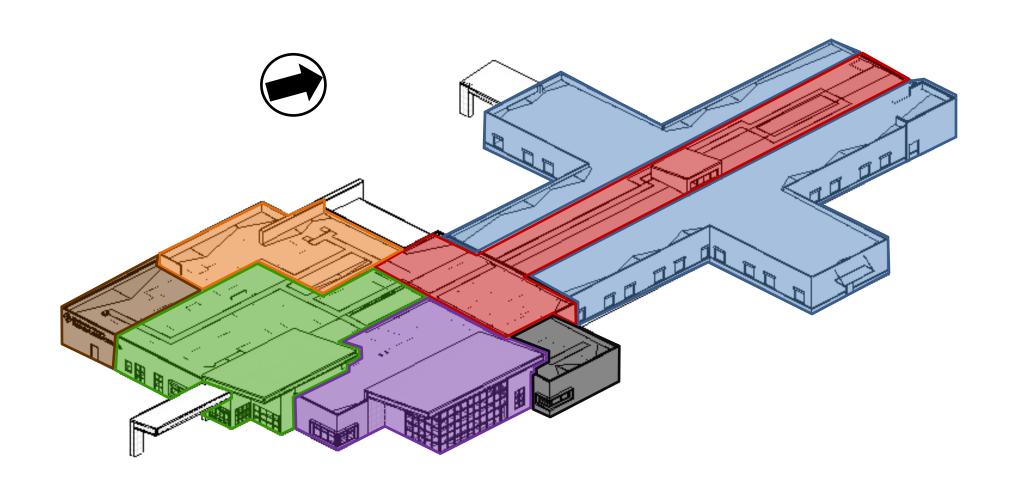


Image courtesy of Bing maps

FACILITY DESCRIPTION

PROJECT INTRODUCTION FACILITY DESCRIPTION MECHANICAL SYSTEM OVERVIEW **THESIS GOALS** MECHANICAL DEPTH STUDIES STRUCTURAL BREADTH **OVERALL EVALUATION CONCLUSION / QUESTIONS**

Function: acute-care rehabilitation hospital

Location: New Braunfels, TX ~30 miles NE of San Antonio

Spaces:

40 Patient Rooms

Exam and Light Procedure Rooms

Physical Therapy Gym

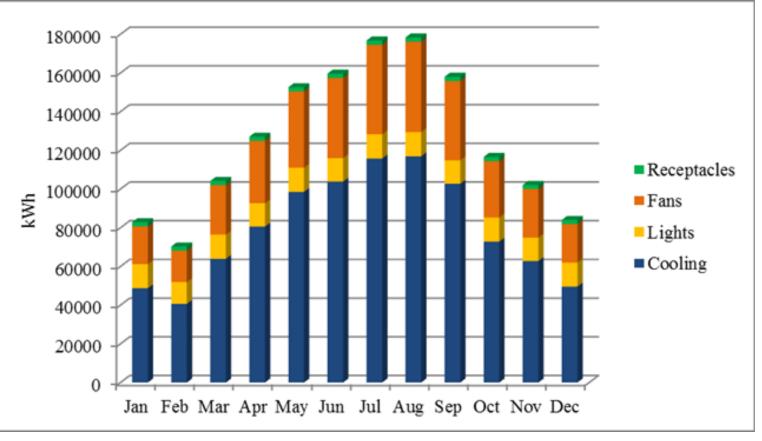
Therapy Pool

Kitchen and Dining

Office and Administration

Three rooftop air-handling units

- Air-cooled, DX cooling
- Gas-fired pre-heat
- 55,500 CFM Total

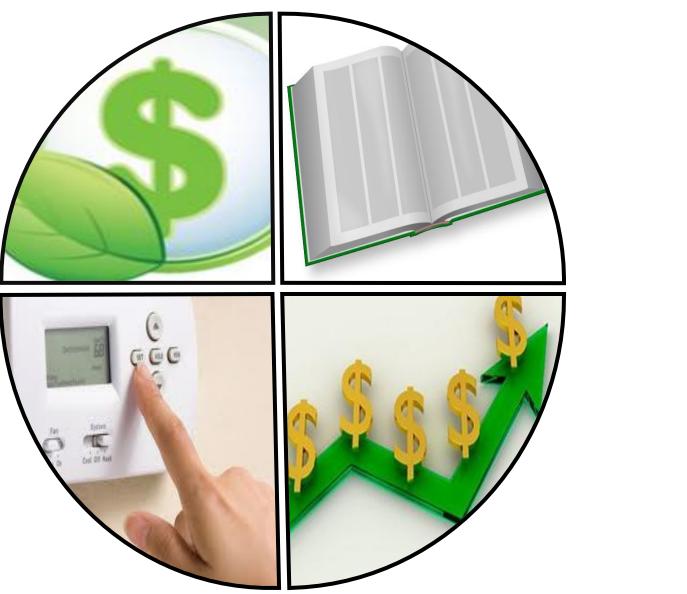

VAV terminal units with reheat

- Zone-level reheat coils
 - Heating hot water supplied by gas-fired boilers
- Fully ducted return system

MAU and PAC Unit

- 100% OA makeup air unit serves kitchen and dining
- PAC Unit controls therapy pool temperature/humidity

PROJECT INTRODUCTION			
FACILITY DESCRIPTION			
MECHANICAL SYSTEM OVERVIEW			
THESIS GOALS			
MECHANICAL DEPTH STUDIES			
STRUCTURAL BREADTH			
OVERALL EVALUATION			
CONCLUSION / QUESTIONS			


Monthly Electrical Energy Consumption

PROJECT INTRODUCTION	Investigate
FACILITY DESCRIPTION	Reduc
MECHANICAL SYSTEM OVERVIEW	Reduct
THESIS GOALS	Improv
MECHANICAL DEPTH STUDIES	
STRUCTURAL BREADTH	Pay ba
OVERALL EVALUATION	Have a
CONCLUSION / QUESTIONS	

systems that could:

- uce energy use and operating costs
- rove occupant temperature control
- back in ~5 years
- academic benefit

PROJECT INTRODUCTION	Depth Stud
MECHANICAL DEPTH STUDIES	High Effici
CENTRAL PLANT INVESTIGATION	Chilled Wa
VRF SYSTEM	Hypothesis
SOLAR THERMAL SYSTEM	
STRUCTURAL BREADTH	Depth Stud
OVERALL EVALUATION	Heat recov
CONCLUSION / QUESTIONS	Improve zo

Academic benefit: Learn the principles of system operation

MECHANICAL DEPTH STUDIES

dy 1: Central Plant Investigation

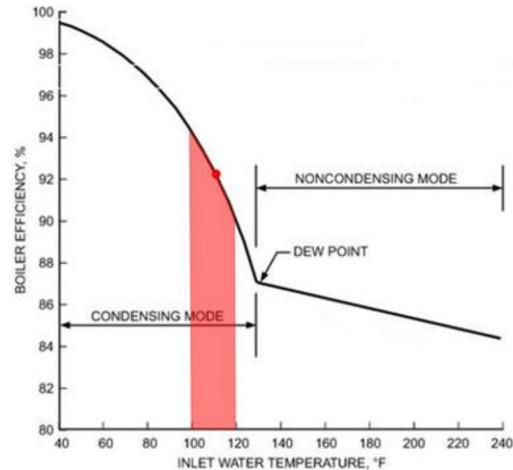
- ciency Condensing Boilers
- *later Plant: Air-Cooled vs. Water-Cooled*
- sis: Will not be cost-effective

dy 2: Variable Refrigerant Flow System

- overy operation: Reduce annual energy use
- zone-level temperature control

Depth Study 3: Solar Thermal System

- Reduce domestic hot water and space heating load
- Utilize the hot Texas climate

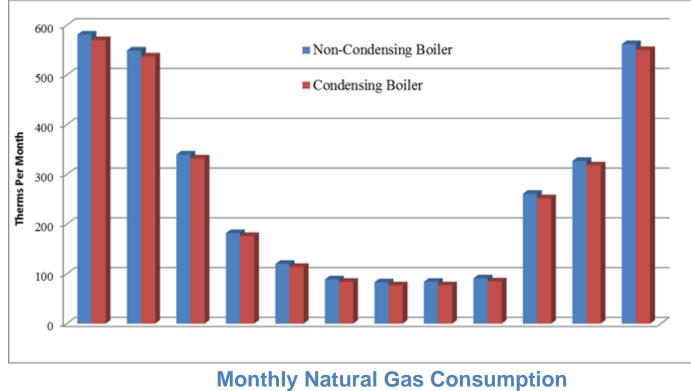

Take advantage of fairly constant domestic hot water demand Academic benefit: Learn the principles of system operation

PROJECT INTRODUCTION	Condensing
MECHANICAL DEPTH STUDIES	 Condense
CENTRAL PLANT INVESTIGATION	recover la
VRF SYSTEM	
SOLAR THERMAL SYSTEM	Increase of the second se
STRUCTURAL BREADTH	Ideal with
OVERALL EVALUATION	Varies
CONCLUSION / QUESTIONS	Vanco

ng Boilers:

- se the water vapor produced by combustion to latent heat
- e overall boiler efficiency
- h low return water temperatures
- es with load average range used for model

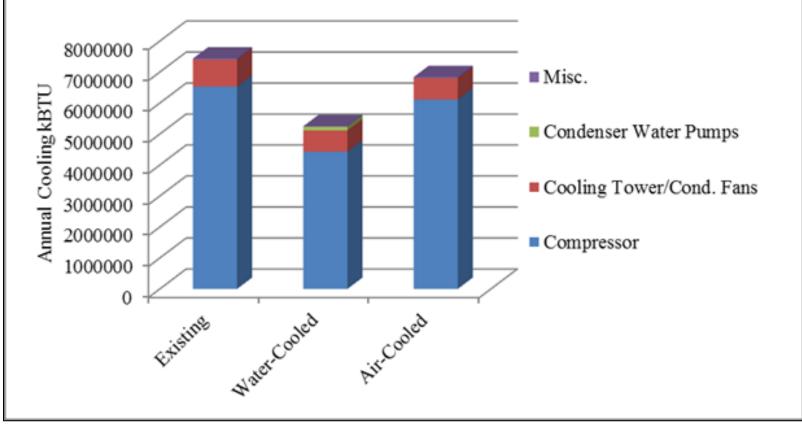
200 220 240



PROJECT INTRODUCTION	Condensing
MECHANICAL DEPTH STUDIES	Condense
CENTRAL PLANT INVESTIGATION	recover la
VRF SYSTEM	
SOLAR THERMAL SYSTEM	Increase
STRUCTURAL BREADTH	Ideal with
OVERALL EVALUATION	Varies
CONCLUSION / QUESTIONS	_
	Decrease

ng Boilers:

- se the water vapor produced by combustion to latent heat
- e overall boiler efficiency
- th low return water temperatures
- es with load average range used for model
- Decrease in natural gas consumption not significant

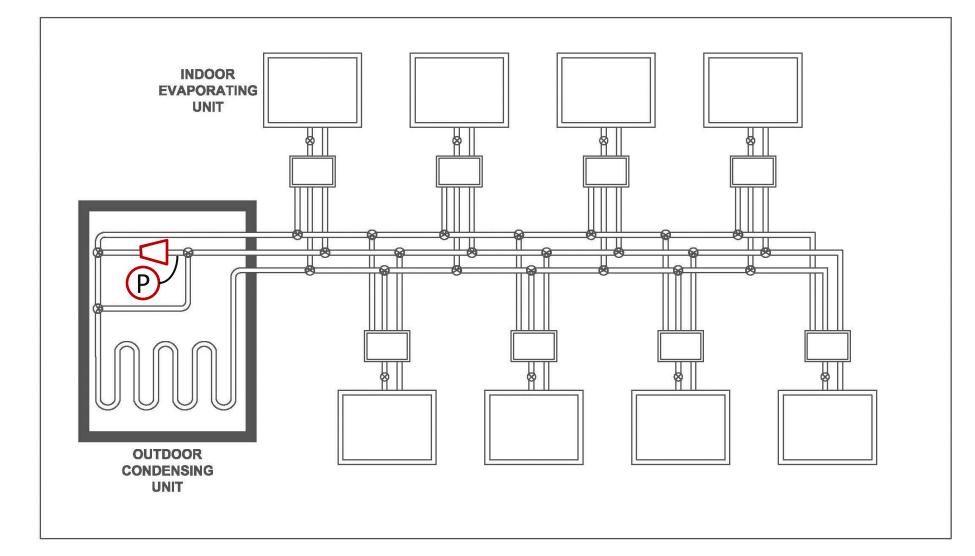

PROJECT INTRODUCTION		
MECHANICAL DEPTH STUDIES		
CENTRAL PLANT INVESTIGATION		
VRF SYSTEM		
SOLAR THERMAL SYSTEM		
STRUCTURAL BREADTH		
OVERALL EVALUATION		
CONCLUSION / QUESTIONS		

Chilled Water System Design:

- Two 90-ton chillers arranged in parallel
- Primary-secondary chilled water pumping configuration
- Air-Cooled:
 - Chillers placed outside no mechanical room space
 - requirement
 - Less significant first cost increase and energy savings

Water-Cooled:

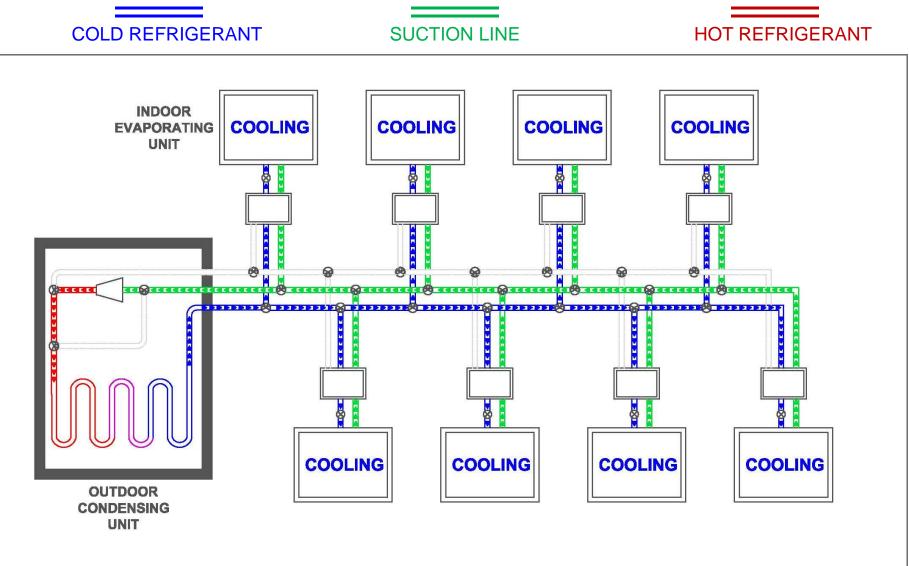
- 200-ton cooling tower with associated condenser water loop
- Increased equipment cost, increased energy savings


Equipment Energy Use

PROJECT INTRODUCTION			
MECHANICAL DEPTH STUDIES			
CENTRAL PLANT INVESTIGATION			
VRF SYSTEM			
SOLAR THERMAL SYSTEM			
STRUCTURAL BREADTH			
OVERALL EVALUATION			
CONCLUSION / QUESTIONS			

System Operation:

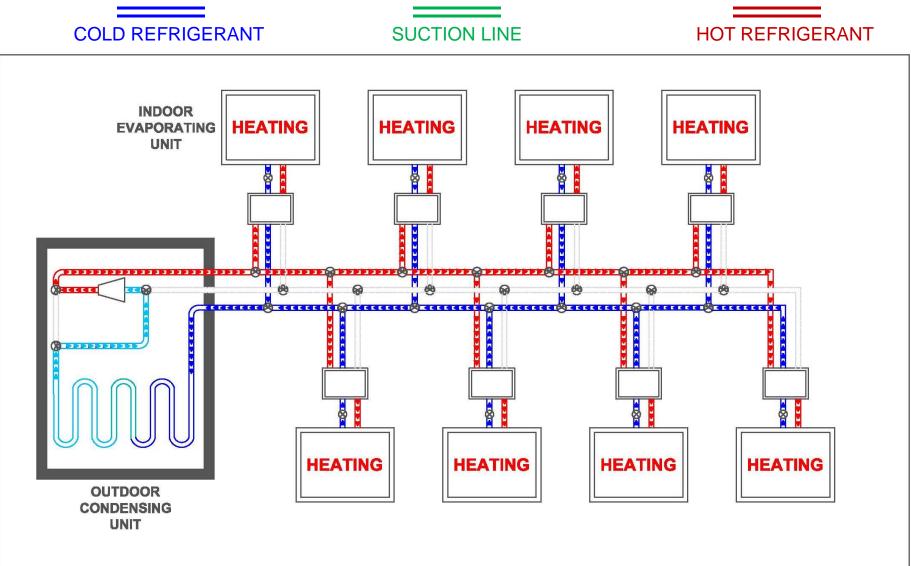
- Several indoor evaporating units connected to one outdoor
- condensing unit
- Refrigerant flow modulated by inverter-driven scroll
 - compressor
 - Flow rate controlled by low pressure sensor at suction side of
 - compressor
 - Goal: control evaporation temperature to match load on each
 - evaporator



PROJECT INTRODUCTION	System
MECHANICAL DEPTH STUDIES	• Seve
CENTRAL PLANT INVESTIGATION	cond
VRF SYSTEM	• Refri
SOLAR THERMAL SYSTEM	comp • F
STRUCTURAL BREADTH	C
OVERALL EVALUATION	• G
CONCLUSION / QUESTIONS	e

- Heat recovery operation:
 - 3-pipe system for simultaneous heating and cooling

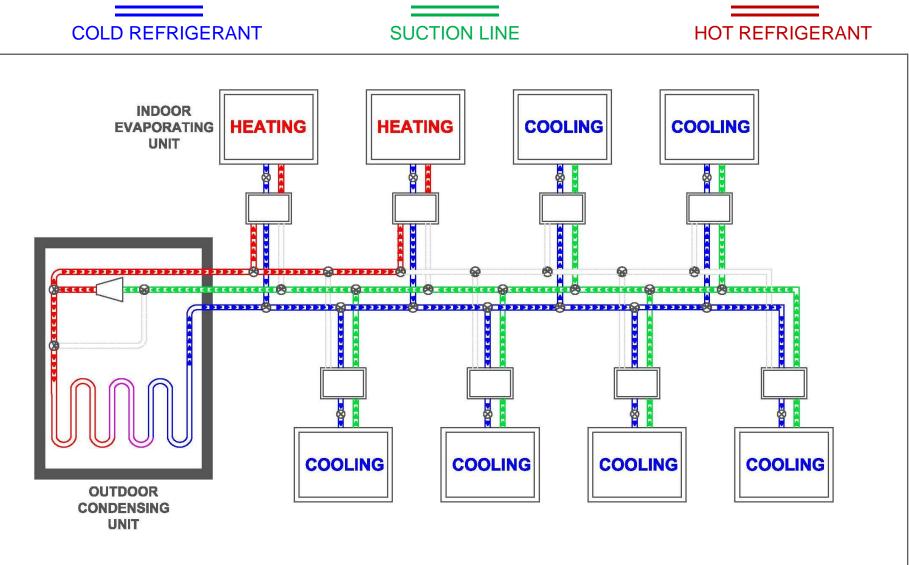
- veral indoor evaporating units connected to one outdoor
- ndensing unit
- rigerant flow modulated by inverter-driven scroll
- pressor
- Flow rate controlled by low pressure sensor at suction side of
- compressor
- Goal: control evaporation temperature to match load on each evaporator



PROJECT INTRODUCTION	System
MECHANICAL DEPTH STUDIES	• Seve
CENTRAL PLANT INVESTIGATION	cond
VRF SYSTEM	• Refrig
SOLAR THERMAL SYSTEM	comp • F
STRUCTURAL BREADTH	C
OVERALL EVALUATION	• G
CONCLUSION / QUESTIONS	e

- Heat recovery operation:
 - 3-pipe system for simultaneous heating and cooling

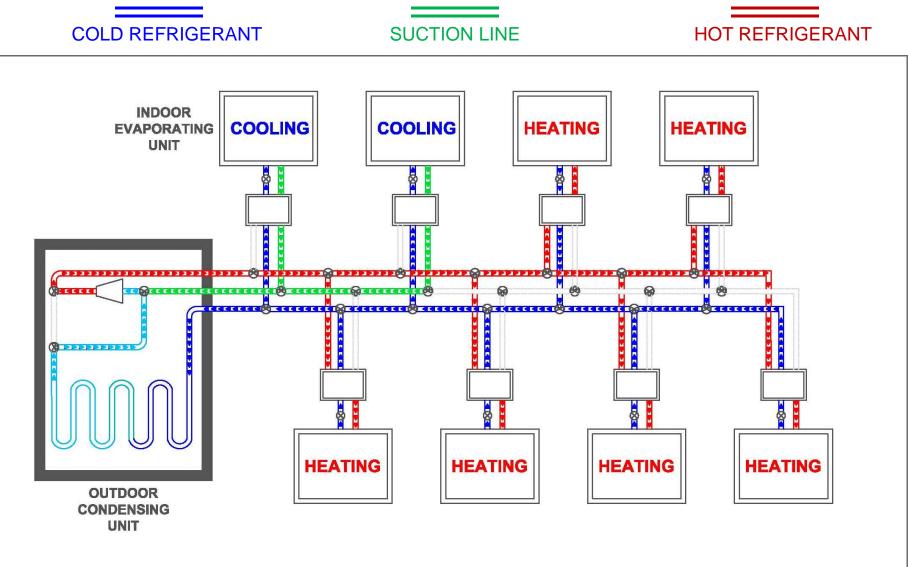
- veral indoor evaporating units connected to one outdoor
- ndensing unit
- rigerant flow modulated by inverter-driven scroll
- pressor
- Flow rate controlled by low pressure sensor at suction side of
- compressor
- Goal: control evaporation temperature to match load on each evaporator



PROJECT INTRODUCTION	System
MECHANICAL DEPTH STUDIES	• Seve
CENTRAL PLANT INVESTIGATION	cond
VRF SYSTEM	• Refrig
SOLAR THERMAL SYSTEM	comp • F
STRUCTURAL BREADTH	C
OVERALL EVALUATION	• G
CONCLUSION / QUESTIONS	e

- Heat recovery operation:
 - 3-pipe system for simultaneous heating and cooling

- veral indoor evaporating units connected to one outdoor
- ndensing unit
- rigerant flow modulated by inverter-driven scroll
- pressor
- Flow rate controlled by low pressure sensor at suction side of
- compressor
- Goal: control evaporation temperature to match load on each evaporator



PROJECT INTRODUCTION	System
MECHANICAL DEPTH STUDIES	• Seve
CENTRAL PLANT INVESTIGATION	cond
VRF SYSTEM	• Refrig
SOLAR THERMAL SYSTEM	comp • F
STRUCTURAL BREADTH	C
OVERALL EVALUATION	• G
CONCLUSION / QUESTIONS	e

- Heat recovery operation:
 - 3-pipe system for simultaneous heating and cooling

- veral indoor evaporating units connected to one outdoor
- ndensing unit
- rigerant flow modulated by inverter-driven scroll
- pressor
- Flow rate controlled by low pressure sensor at suction side of
- compressor
- Goal: control evaporation temperature to match load on each evaporator

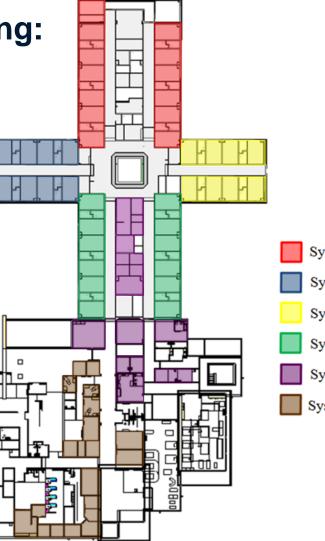
System Zoning:

PROJECT INTRODUCTION

MECHANICAL DEPTH STUDIES

CENTRAL PLANT INVESTIGATION

VRF SYSTEM


SOLAR THERMAL SYSTEM

STRUCTURAL BREADTH

OVERALL EVALUATION

CONCLUSION / QUESTIONS

System 1: Patient Rooms

- System 2: Patient Rooms
 - System 3: Patient Rooms
- System 4: Patient Rooms
- System 5: Exam Rooms
- System 6: Offices

• System Designed: six condensing units:

System	Existing System Zone		VRF System	
System Cooling (Ton) He		Heating (MBh)	Cooling (Ton)	Heating (MBh)
VRF-1	11.6	28.6	10.8	54.0
VRF-2	7.1	17.1	6.7	35.1
VRF-3	7.2	17.1	6.8	35.1
VRF-4	11.0	27.3	10.3	51.1
VRF-5	8.1	13.5	7.5	33.0
VRF-6	8.4	20.9	7.9	30.0

- All indoor units ducted connected to a 100% outside air unit for ventilation
- RTU-1 can be removed, remaining zones served by existing RTUs 2 & 3

PROJECT INTRODUCTION

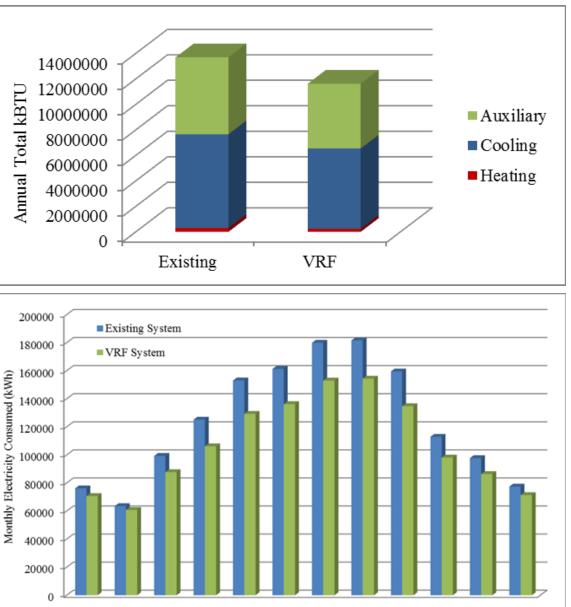
MECHANICAL DEPTH STUDIES

CENTRAL PLANT INVESTIGATION

VRF SYSTEM

SOLAR THERMAL SYSTEM

STRUCTURAL BREADTH


OVERALL EVALUATION

CONCLUSION / QUESTIONS

200000

180000

20000

• System Designed: six condensing units:

Suctom	Existing System Zone		VRF System		
System	Cooling (Ton)	Heating (MBh)	Cooling (Ton)	Heating (MBh)	
VRF-1	11.6	28.6	10.8	54.0	
VRF-2	7.1	17.1	6.7	35.1	
VRF-3	7.2	17.1	6.8	35.1	
VRF-4	11.0	27.3	10.3	51.1	
VRF-5	8.1	13.5	7.5	33.0	
VRF-6	8.4	20.9	7.9	30.0	

- All indoor units ducted connected to a 100% outside air unit for ventilation
- RTU-1 can be removed, remaining zones served by existing RTUs 2 & 3
- Significant energy savings from cooling and fan energy reduction
- System most efficient in summer months not attributed to heat recovery

PROJECT INTRODUCTION	 System Add
MECHANICAL DEPTH STUDIES	• + Indoo
	• + VRF
CENTRAL PLANT INVESTIGATION	• + Outde
VRF SYSTEM	• + Refrig
SOLAR THERMAL SYSTEM	• - RTU -1
STRUCTURAL BREADTH	• .
OVERALL EVALUATION	 Yearly Savi
CONCLUSION / QUESTIONS	 Simple Pay

• 20-year life-cycle cost: \$1,104,911

*Does Not Include Domestic Hot Water Energy Use

ded First Cost: \$57,442

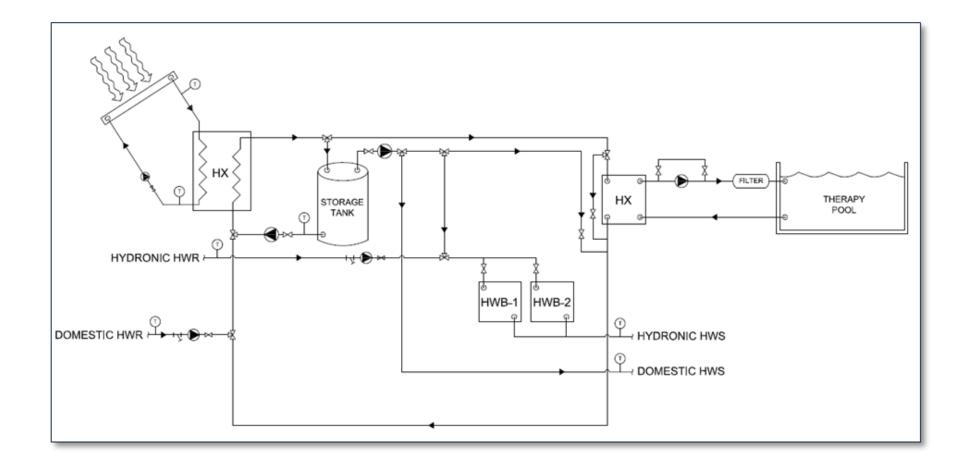
- oor & Outdoor Units (\$53,680)
- Piping & Distribution (\$76,580)
- door Air Unit (\$23,725)
- rigerant & Controls (\$6,600)
- -1 Eliminated (-\$86,502) - Roof Framing Cost (-\$2,900)
- vings: \$9,906
- yback Period: 5.8 years

(existing system: \$1,171,718)*

• System Designed: six condensing units:

Stratom	Existing System Zone		VRF System		
System	Cooling (Ton)	Heating (MBh)	Cooling (Ton)	Heating (MBh)	
VRF-1	11.6	28.6	10.8	54.0	
VRF-2	7.1	17.1	6.7	35.1	
VRF-3	7.2	17.1	6.8	35.1	
VRF-4	11.0	27.3	10.3	51.1	
VRF-5	8.1	13.5	7.5	33.0	
VRF-6	8.4	20.9	7.9	30.0	

- All indoor units ducted connected to a 100% outside air unit for ventilation
- RTU-1 can be removed, remaining zones served by existing RTUs 2 & 3
- Significant energy savings from cooling and fan energy reduction
- System most efficient in summer months not attributed to heat recovery



PROJECT INTRODUCTION MECHANICAL DEPTH STUDIES **CENTRAL PLANT INVESTIGATION VRF SYSTEM** SOLAR THERMAL SYSTEM STRUCTURAL BREADTH **OVERALL EVALUATION CONCLUSION / QUESTIONS**

System Operation:

- Flat-plate, forced circulation solar collection system
 - Glycol-water mixture used in collection loop for freeze protection
- Thermal storage in hot water storage tank
- Has indirect heater: replaces existing hot water heaters
- Primary Functions: Heat domestic hot water &
 - Loads calculated through methods in ASHRAE Handbooks
- **Secondary Function: Space heating**
 - Loads from Trace Energy Model

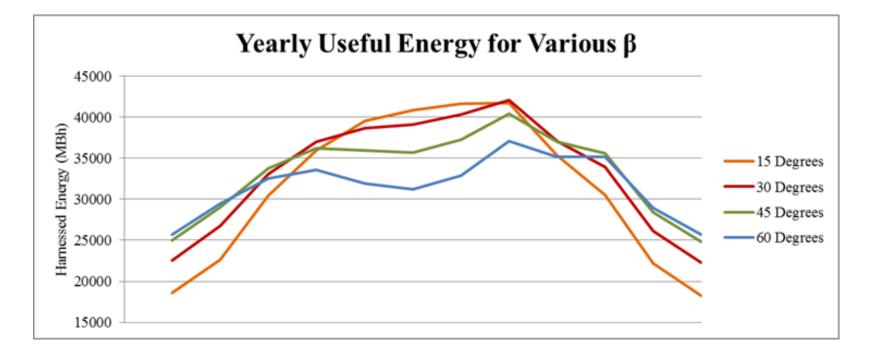
Therapy pool heating

PROJECT INTRODUCTION	Solar Gain C
MECHANICAL DEPTH STUDIES	Based on:
CENTRAL PLANT INVESTIGATION	Latitude
VRF SYSTEM	Zenith A
SOLAR THERMAL SYSTEM	Hour Ar
STRUCTURAL BREADTH	Solar D Collecte
OVERALL EVALUATION	Surface
CONCLUSION / QUESTIONS	Collecte

System Operation Characteristics

^r Gain Calculation

Latitude ($\Phi = 29.69^{\circ}N$)


Zenith Angle <mark>(θ</mark>z) ¬ - Hourly dependent Hour Angle (w)

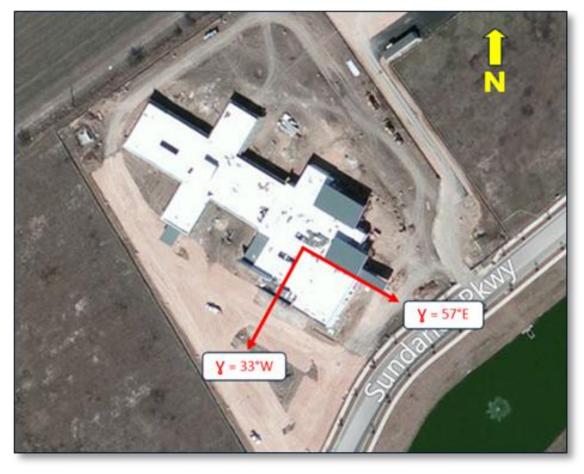
Solar Declination(δ) – Date dependent

Collector Tilt (β) - optimized at $\beta = 37.2^{\circ} \rightarrow 40^{\circ}$ was used

Surface Azimuth (Υ) - optimized at $\beta = 37.5^{\circ}W \rightarrow 33^{\circ}W$ was used

Collector Characteristics

PROJECT INTRODUCTION	Solar Gain C
MECHANICAL DEPTH STUDIES	Based on:
CENTRAL PLANT INVESTIGATION	Latitude
VRF SYSTEM	• Zenith A
SOLAR THERMAL SYSTEM	Hour Ar
STRUCTURAL BREADTH	Solar De Collecte
OVERALL EVALUATION	Surface
CONCLUSION / QUESTIONS	Collecto


System Operation Characteristics

^r Gain Calculation

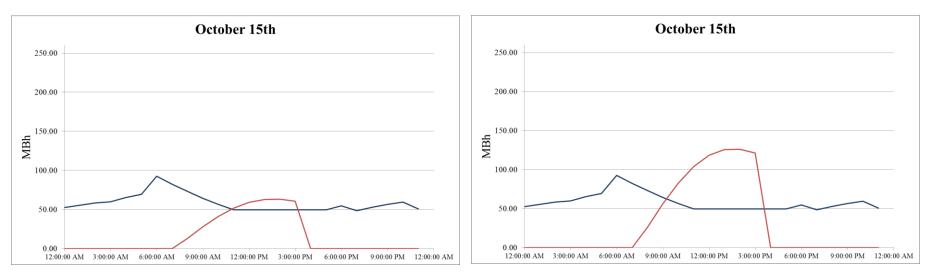
Latitude (Φ = 29.69°N)

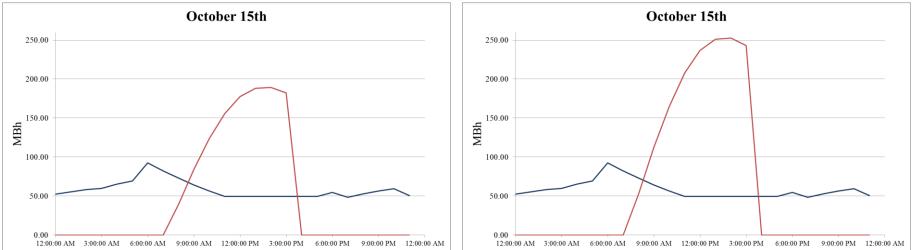
Zenith Angle <mark>(θ</mark>z) ¬ - Hourly dependent Hour Angle (ω)

- Solar Declination(δ) Date dependent
- Collector Tilt (β) optimized at $\beta = 37.2^{\circ} \rightarrow 40^{\circ}$ was used
- Surface Azimuth (Υ) optimized at Υ = 37.5°W \rightarrow 33°W was used
- **Collector Characteristics**

Image courtesy of Bing maps

DEPTH STUDY 3: SOLAR THERMAL SYSTEM


PROJECT INTRODUCTION	Collector Arra
MECHANICAL DEPTH STUDIES	• Area: (3) 130 1
CENTRAL PLANT INVESTIGATION	Goal: ma
VRF SYSTEM	L
SOLAR THERMAL SYSTEM	
STRUCTURAL BREADTH	without
OVERALL EVALUATION	
CONCLUSION / QUESTIONS	


rangement

-) ft² collectors \rightarrow 390 ft² total
- naximize total solar fraction:
- Load met by solar system Total load
- out overheating or throwing away energy

Thermal Storage

----- Peak Load

Useful Gain

DEPTH STUDY 3: SOLAR THERMAL SYSTEM

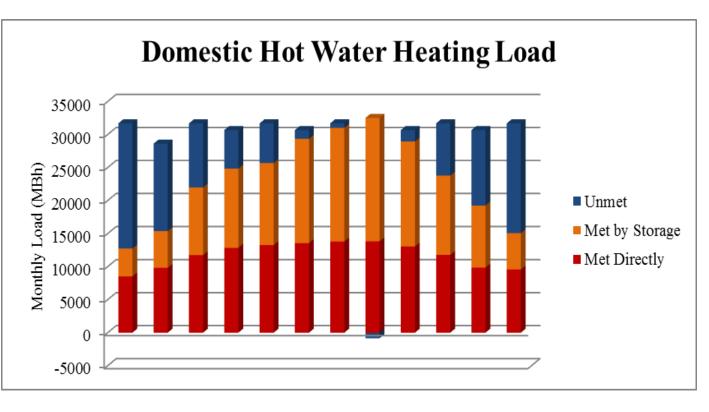
PROJECT INTRODUCTION

MECHANICAL DEPTH STUDIES

CENTRAL PLANT INVESTIGATION

VRF SYSTEM

SOLAR THERMAL SYSTEM


STRUCTURAL BREADTH

OVERALL EVALUATION

CONCLUSION / QUESTIONS

Load Met Directly:

- **38%** of annual domestic hot water heating load met
 - directly
- 8% of space heating load met directly

Thermal storage in a 400 gallon stratified hot water tank:

• **38%** of DHW load through storage 76% total

DEPTH STUDY 3: SOLAR THERMAL SYSTEM

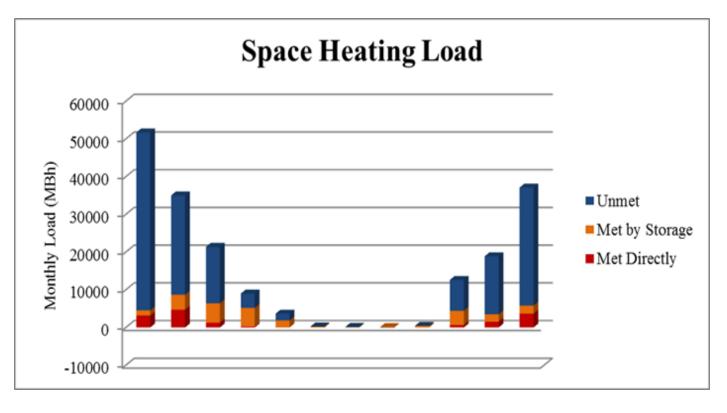
PROJECT INTRODUCTION

MECHANICAL DEPTH STUDIES

CENTRAL PLANT INVESTIGATION

VRF SYSTEM

SOLAR THERMAL SYSTEM


STRUCTURAL BREADTH

OVERALL EVALUATION

CONCLUSION / QUESTIONS

Load Met Directly:

directly

• **38%** of annual domestic hot water heating load met

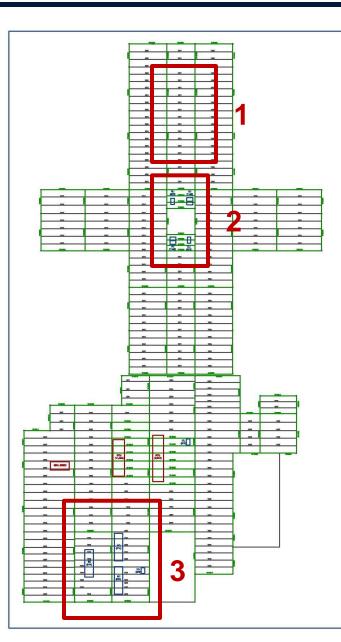
- Thermal storage in a 400 gallon stratified hot water tank:
 - **38%** of DHW load through storage 76% total
 - **14%** of space heating through

storage 22% total

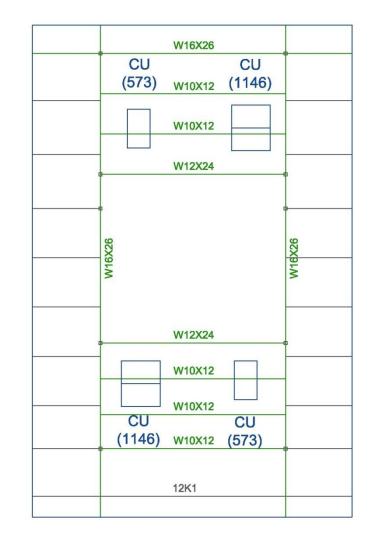
PROJECT INTRODUCTION	 System Ac
MECHANICAL DEPTH STUDIES	• + Co
	• + Sto
CENTRAL PLANT INVESTIGATION	• + Hea
VRF SYSTEM	• + Pip
SOLAR THERMAL SYSTEM	• + Co
STRUCTURAL BREADTH	
OVERALL EVALUATION	 Yearly Sav
CONCLUSION / QUESTIONS	 Simple Pa

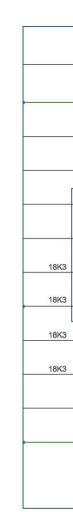
• 20-year life-cycle cost: \$1,742,889

Added First Cost: \$61,906


- ollectors (\$26,758)
- Storage Tank (\$4,670)
- leat Exchangers (\$8,403)
- Piping & Distribution Equipment (\$1,555)
- Controls (\$10,520)
- avings: \$30,814
- Payback Period: 2.06 years

- (existing system: \$2,070,197)*
- *Includes Domestic Hot Water Energy Use




BREADTH STUDY: STRUCTURAL

PROJECT INTRODUCTION MECHANICAL DEPTH STUDIES STRUCTURAL BREADTH OVERALL EVALUATION CONCLUSION / QUESTIONS

12K1	
12K1	
	0
04X81 12K1	W18X40
18	18
≥ 12K1	3
40/44	
 12K1	
12K1	
12K1	
12K1	
 121(1	
12K1	
40	40
04X81W 12K1	W18X40
12K1	N
 - 121(1	-
12K1	
401/4	
 12K1	
12K1	

					_
18K3			18K3		
W16X26			18K3		
18K3			18K3		
18K3		SC	18K3		
18K3	W18X35	(614)	18K3		W16X26
18K3			18K3		
SC (614)					
			18K3	CU (573)	
		SC (614)	18K3		
			18K3 18K3		
18K3	W16X26		18K3		W12X14
W12X24			W12X24		

OVERALL EVALUATION

PROJECT INTRODUCTION MECHANICAL DEPTH STUDIES STRUCTURAL BREADTH **OVERALL EVALUATION CONCLUSION / QUESTIONS**

Chilled Water System Not Recommended 🗶

- Facility not large enough
- Energy requirement not high enough
- No life-cycle cost benefit

VRF System Recommended **V**

- Contingent on CFD analysis
- Humidity Control Necessary
- Dependent on owner's payback threshold

Solar Thermal System Recommended

- Quick payback
- Great climatic conditions
- Free energy!

PROJECT INTRODUCTION MECHANICAL DEPTH STUDIES STRUCTURAL BREADTH **OVERALL EVALUATION CONCLUSION / QUESTIONS**

Special Thanks:

- Ernest Health, Inc.
- JBA Consulting Engineers Jason Witterman Kris Kalkowski **Stephen Haines**
- Dekker/Perich/Sabatini Architects Bobby George
- Faculty Advisor: Dr. William Bahnfleth
- Faculty Member: Dr. Stephen Treado
- Fellow AE Students

QUESTIONS?

Jr. 8 100

 π

